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Abstract 

Background  Medial soft tissue release is occasionally performed to achieve mediolateral ligament balance in total 
knee arthroplasty (TKA), whose sequential effect on mediolateral and anteroposterior stability remains unclear. 
This study aimed to quantitatively evaluate the difference in mediolateral and anteroposterior stability according 
to a sequential medial soft tissue release in TKA.

Methods  Cruciate-retaining TKA was performed in six cadaveric knees. Medial and lateral joint gaps, varus-valgus 
angle, and tibial anterior and posterior translations relative to the femur with pulling and pushing forces, respectively, 
were measured. All measurements were performed at full extension and 45° and 90° flexion after release of the deep 
medial collateral ligament (MCL) (stage 1), the posteromedial capsule (stage 2), and the superficial MCL (stage 3). 
Mediolateral and anteroposterior stability were compared between stages, and correlations between mediolateral 
and anteroposterior stability were analyzed.

Results  Medial joint gap significantly increased from stages 1 to 3 by 3.2 mm, 6.8 mm, and 7.2 mm at extension, 45° 
flexion, and 90° flexion, respectively, and from stages 2 to 3 by 3.5 mm at extension. Varus-valgus angle was varus 
at stage 2, which turned to valgus at stage 3 (−2.7° to 0.8°, −2.2° to 4.3°, and −5.5° to 2.5° at extension, 45° flexion, 
and 90° flexion, respectively). Anterior translation at 90° flexion significantly increased from stages 1 and 2 to stage 3 
by 11.5 mm and 8.2 mm, respectively, which was significantly correlated with medial gap (r = 0.681) and varus-valgus 
angle (r = 0.495).

Conclusions  Medial soft tissue release also increased tibial anterior translation as well as medial joint gap, and medial 
joint gap and tibial anterior translation were significantly correlated. Surgeons should be careful not to create too 
large medial joint gap and tibial anterior translation in flexion by excessive medial release up to the superficial MCL 
for achieving an equal mediolateral joint gap in extension.

Keywords  Knee, Total knee arthroplasty, Ligament balancing, Medial release, Mediolateral gap, Anterior posterior 
stability

Background
Medial soft tissue release is occasionally performed dur-
ing total knee arthroplasty (TKA) for severe varus knees 
to equalize the medial and lateral joint gaps. However, 
a loose medial joint gap due to over-release worsened 
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clinical outcomes [1–3] and increased femoral anter-
oposterior translation, also resulting in inferior patient-
reported outcome measures [4–6]. Management to avoid 
a loose medial joint gap is important for successful TKA.

Recently, a medial stabilizing technique that minimizes 
medial soft tissue release to the deep medial collateral 
ligament (dMCL) has been proposed to achieve medial 
stability, and a larger lateral than medial joint gap is tol-
erated [7–11]. In a medial stabilizing technique, proper 
tension, or near-normal stability of the medial collateral 
ligament (MCL) and posterior cruciate ligament (PCL), 
is achieved by cutting adequate amounts of bone from 
the femur and tibia, which requires no medial release. 
In addition, extensive medial release to achieve an equal 
mediolateral extension gap is not recommended, because 
this procedure would cause too large medial flexion gap 
[12]. However, it is impossible to intraoperatively assess 
how far further release contributes to the medial and lat-
eral joint gaps and anteroposterior translations by releas-
ing in sequence to achieve optimal stability.

Medial release increased medial joint gap in flexion 
and extension [5, 7], and medial joint gap is related to 
anteroposterior stability [8–10]. However, sequential 
evaluation of an effect of medial soft tissue release on 
mediolateral and anteroposterior stability throughout 
range of motion following the actual surgical procedure 
in TKA has not been investigated. The present study 
aimed to quantitatively evaluate the extent to which and 
at what flexion angle medial and lateral joint gaps and 
tibial anteroposterior translation relative to the femur 
increase by sequential medial soft tissue release in cru-
ciate-retaining (CR) TKA using cadaveric knees, and to 
investigate an effect of mediolateral stability on anter-
oposterior stability. It was hypothesized that both the 
medial gap and tibial anterior translation relative to the 
femur would increase after the superficial MCL (sMCL) 
release at 90° flexion, and that larger medial gap would 
increase tibial anterior translation relative to the femur.

Material and methods
Specimens
Three pairs of cadaveric knees from one female and 
two male Thiel-embalmed full-body specimens were 
examined. All of the cadavers were donated to our insti-
tute voluntarily, and the present study was approved by 
our institutional review board. The ages at death were 
62, 65, and 81 years old. None of the knees had macro-
scopic signs of osteoarthritis (OA), previous trauma, or 
knee surgery. Preoperative whole-limb alignment was 
measured using a post mortem computed tomography: 
the weight-bearing line ratio (WBLR), a percentage of 
the intersection of the weight-bearing line and the tibial 
plateau (medial and lateral edge were defined as 0% and 
100%, respectively); hip-knee-ankle angle (HKAA), an 
angle between the femoral and tibial mechanical axes; 
mechanical lateral distal femoral angle (mLDFA), a lat-
eral angle between the femoral mechanical axis and a line 
tangent to the distal femur; and medial proximal tibial 
angle (MPTA), a medial angle between the tibial mechan-
ical axis and a line tangent to the tibial plateau surface,  
presented in Table 1.

Surgical technique
CR-TKA was performed with a standard midline skin 
incision and medial parapatellar arthrotomy using the 
Initia Total Knee System CR Type (Kyocera, Kyoto, 
Japan). No additional medial soft tissue release was per-
formed except the dMCL, which was detached subperi-
osteally 10 mm distal to the medial joint line. The distal 
femur was cut perpendicular to the femoral mechanical 
axis in the coronal plane and parallel to the distal femo-
ral anatomical axis in the sagittal plane. The axial rotation 
of the femoral component was aligned with the surgical 
epicondylar axis. The femoral component size was deter-
mined on the basis of a posterior reference. The proximal 
tibia was cut perpendicular to the tibial mechanical axis 
in the coronal plane approximately 10 mm from the most 

Table 1  Lower limb alignment of each specimen

WBLR, weight-bearing line ratio; HKAA, hip-knee-ankle angle; mLDFA, mechanical lateral distal femoral angle; MPTA, medial proximal tibial angle; SD, standard 
deviation

WBLR (%) HKAA (°) mLDFA (°) MPTA (°)

1 Female Right 30.5 −4.5 87.4 87.0

2 Female Left 42.0 −2.1 85.6 86.0

3 Male Right 32.0 −3.9 88.6 86.0

4 Male Left 41.1 −2.2 82.8 84.5

5 Male Right 26.6 −2.6 87.6 84.1

6 Male Left 32.4 −2.1 87.7 86.3

Mean 34.1 −2.9 86.6 85.7

SD 6.1 1.0 2.1 1.1
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proximal surface of the lateral tibial plateau, retaining 
the PCL attachment as a bone island. A posterior tibial 
slope of 7° relative to the tibial shaft was set in the sagit-
tal plane. Tibial rotational alignment was aligned with the 
line connecting the tibial insertion of posterior cruciate 
ligament and medial margin of the patellar tendon [13]. 
In this analysis, the same insert thickness (9 mm) was 
used in all TKAs. The patella was not resurfaced.

Measurements
A series of medial soft tissue releases and measure-
ments were performed in sequence. The medial soft tis-
sue release was performed in the dMCL, posteromedial 
capsule (PMC), and sMCL. The medial and lateral joint 
gaps, varus-valgus angle, and tibial anterior and poste-
rior translations relative to the femur were measured 
using actual surgical measurement devices at 0°, 45°, 
and 90° flexion. The measurements were conducted in 
three stages; firstly after the procedure with the release 
of dMCL mentioned above (stage 1), secondly after the 
additional release of PMC (stage 2), and finally after 
the additional release of sMCL (stage 3). The PMC was 
detached subperiosteally from the tibial attachment 
using a scalpel, and the sMCL was detached subperi-
osteally from its proximal tibial attachment using a peri-
osteal elevator, and sharply resected just above the distal 
tibial insertion using a scalpel.

The center gap and varus-valgus angle were measured 
manually without any measurable device such as a navi-
gation system at 0°, 45°, and 90° flexion. A distraction 
force of 40 lb (178 N) was applied using an offset-type 
tensor device with the trial femoral component (Fig.  1) 
[9–11, 14]. Medial and lateral gaps were calculated on the 
basis of the center gap, varus-valgus angle, and transverse 
diameter of the tibial plate using trigonometric function 
as per previous studies [15, 16]. Measurements were per-
formed three times to confirm the measured gap remain-
ing constant, and the third measured value was adopted 

to reduce errors due to creep elongation of surrounding 
soft tissues [17, 18]. For the varus-valgus angle, valgus 
was denoted as positive.

Tibial anterior and posterior translations relative to 
the femur were measured using a paddle-type device 
after fixing the trial tibial component and polyethylene 
insert. The device was fixed to the anterior surface of the 
tibial tray, and the paddle part of the device was set on 
the medial part of the femoral component, which could 
measure the position of the anterior margin of the tibial 
tray from the medial condyle of the femoral component 
with a built-in ruler. The zero position was defined as 
no force applied to the tibia. The tibial positions were 
measured while applying pulling and pushing forces of 
70 N through an eyelet screw fixed to the tibial tuber-
osity using a handheld analog force gauge (Fig.  2) [10]. 
The measurements with pulling and pushing forces were 

Fig. 1  The joint center gap and varus-valgus angle were measured using a tensor device (left). A distraction force of 40 lb (178 N) was applied 
with a torque screwdriver (center).The tensor device shows the joint center gap of 15 mm with 1° varus (right)

Fig. 2  Tibial anterior and posterior translations relative 
to the femur were measured applying pulling and pushing 
forces through an eyelet screw fixed to the tibial tuberosity using 
a handheld analog force gauge. The figure shows applying a pulling 
force for the measurement of tibial anterior translation
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conducted five times each, and the averages of the three 
intermediate values were used for data. The tibial transla-
tions with pulling and pushing forces relative to the zero 
position were defined as “tibial anterior translation” and 
“tibial posterior translation,” respectively. Each additional 
release was performed by removing the trial implants 
after completion of measurements at the previous stage. 
During each measurement, the thigh was held by an 
assistant and aligned in the sagittal plane with the hip 
and ankle joints in neutral rotation to eliminate external 
load on the knee. The intrarater reliabilities were assessed 
using intraclass correlation coefficients for both anterior 
and posterior translations, which were > 0.92 and > 0.81, 
respectively.

Statistical analysis
All statistical analyses were performed using the R soft-
ware (version 4.2.1; R Foundation for Statistical Compu-
tation, Vienna, Austria). Normality was examined using 
the Shapiro–Wilk test for each group used for compari-
son. Comparisons of mediolateral and anteroposterior 
laxity among the stages were conducted using one-way 
repeated measures analysis of variance (RM ANOVA) 
for normal distributions. Greenhouse–Geisser correc-
tion was used for violations of the sphericity according 
to Mauchly’s sphericity test. Friedman’s test was used for 
non-normal distributions. Post hoc multiple compari-
sons were performed using Shaffer’s modified sequen-
tially rejective multiple-test procedure. To investigate 

the correlation between mediolateral and anterolateral 
stabilities, Pearson’s correlation test and Spearman’s rank 
correlation test were performed for normal and non-
normal distributions, respectively. Statistical significance 
level was set at P-value < 0.05. Post hoc power analysis 
was performed in relation to the tibial anterior transla-
tion at 90° of knee flexion on the basis of a significant 
level of α < 0.05 using G*power 3.1.9.7 (Heinrich-Heine-
Universität Düsseldorf, Düsseldorf, Germany). An effect 
size η2 of 0.54 and power (1-β) of 0.99 were obtained.

Results
Medial and lateral gaps and varus‑valgus angle
Medial gap significantly differed among the stages by 
one-way RM ANOVA in all knee flexion angles (Table 2). 
Post hoc multiple comparison showed that medial gap 
significantly increased at stage 3 from stage 2 at 0° flex-
ion (Fig. 3a), and from stage 1 at 90° flexion (Fig. 3c), but 
there was no significant difference at 45° flexion (Table 2 
and Fig.  3b). Lateral gap was not significantly different 
among the stages in all knee flexion angles (Table  2). 
Varus-valgus angles were varus at stage 1 and stage 2, 
which turned to valgus at stage 3 (Table  2 and Fig.  4). 
At 0° flexion, there was a significant difference of varus-
valgus angle between stage 1 and stage 3 by post hoc 
multiple comparison (Fig. 4a). At 90° flexion, there were 
no significant differences between the stages, although 
one-way RM ANOVA showed significance (Table 2 and 
Fig. 4b).

Table 2  Medial and lateral gaps, varus-valgus angle, and tibial anterior and posterior translations per knee flexion angle and stage

Data are presented as mean ± standard deviation. Bold texts indicate statistically significant difference
* One-way repeated measures analysis of variance
† Friedman’s test

Stage 1 Stage 2 Stage 3 P-value Post hoc multiple comparison

1 versus 2 2 versus 3 1 versus 3

Medial gap (mm) 0° 9.3 ± 1.2 9.0 ± 1.3 12.5 ± 3.0 0.002* 0.582 0.033 0.033
45° 12.1 ± 2.7 14.0 ± 2.4 18.3 ± 5.4 0.026* 0.252 0.118 0.082

90° 12.5 ± 3.3 13.0 ± 3.4 20.2 ± 6.1 0.048† 0.827 0.083 0.018
Lateral gap (mm) 0° 11.5 ± 0.8 10.7 ± 2.0 12.1 ± 1.7 0.119*

45° 12.9 ± 1.5 15.3 ± 2.4 16.0 ± 3.4 0.067*

90° 16.3 ± 5.5 16.4 ± 4.1 18.8 ± 5.3 0.109*

Varus-valgus angle (°) 0° −3.5 ± 1.0 −2.7 ± 2.6 0.8 ± 3.6 0.025* 0.418 0.121 0.046
45° −2.9 ± 1.9 −2.2 ± 3.8 4.2 ± 7.2 0.042* 0.626 0.171 0.171

90° −6.0 ± 3.3 −5.5 ± 4.2 2.5 ± 6.4 0.049* 0.610 0.074 0.071

Anterior translation (mm) 0° 3.1 ± 1.2 4.7 ± 2.4 7.4 ± 6.9 0.227*

45° 10.6 ± 4.8 10.7 ± 5.3 19.0 ± 12.6 0.093*

90° 9.8 ± 4.4 13.1 ± 4.1 21.3 ± 6.1 0.005* 0.342 0.043 0.004
Posterior translation (mm) 0° 3.4 ± 4.4 −0.8 ± 1.2 −0.3 ± 0.5 0.129†

45° 2.0 ± 2.0 −3.9 ± 2.9 −3.8 ± 4.8 0.311†

90° 3.0 ± 0.3 −4.4 ± 3.8 −4.3 ± 4.4 0.821*
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Anterior and posterior translation
Tibial anterior translation significantly differed among 
the stages by one-way RM ANOVA only at 90° flexion 
(Table 2). Post hoc multiple comparison showed that tib-
ial anterior translation significantly increased at stage 3 
from stage 1 and from stage 2 at 90° flexion (Fig. 5). Stage 
3 release equalized the medial and lateral gaps at 0° flex-
ion, with causing markedly greater tibial anterior trans-
lation at 90° flexion. Tibial posterior translation was not 
significantly different among the stages in all knee flexion 
angles (Table 2).

Correlation between the mediolateral gap 
and anteroposterior translation
As presented in Table 3, at 0° and 90° flexion, tibial ante-
rior translation had significant positive correlations 
with medial gap (Figs. 6a and 7a) and varus-valgus angle 
(Figs. 6b and 7b). At 90° flexion, tibial posterior transla-
tion had a significant positive correlation with medial gap 
(Table 3 and Fig. 7c). There were no significant correla-
tions between mediolateral and anterolateral stabilities at 
45° flexion (Table 3). Tibial anterior translation at 0° and 
90° flexion increased as medial gap increased and as the 

Fig. 3  (a) Medial gap at 0° flexion was significantly larger at stage 3 than at stage 1 and stage 2. (b) There was no significant difference of medial 
gap at 45° flexion between the stages by a post hoc multiple comparison. (c) Medial gap at 90° flexion was significantly larger at stage 3 
than at stage 1

Fig. 4  (a) Varus-valgus angle at 0° flexion was significantly larger at stage 3 than at stage 1. (b) There was no significant difference of varus-valgus 
angle at 90° flexion between the stages by a post hoc multiple comparison. At both flexion angles, varus angles at stage 1 and stage 2 turned 
valgus at stage 3
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knee joint varus-valgus angle became valgus. There were 
no factors correlated with lateral gap.

Discussion
The present study evaluated medial and lateral gaps, 
varus-valgus angle, and tibial anterior and posterior 
translations relative to the femur at 0°, 45°, and 90° flexion 
by the sequential release of the dMCL, PMC, and sMCL 
in CR-TKA to simulate actual surgery using cadaveric 
knees. The sMCL release markedly increased medial gap 
and tibial anterior translation at 90° flexion, although the 
nearly equal medial and lateral gaps and almost paral-
lel varus-valgus angle, so-called a rectangular gap, were 
obtained at 0° flexion. Tibial anterior and posterior trans-
lations had significant positive correlations with medial 
gap. Our hypotheses that both medial gap and tibial ante-
rior translation would increase after the sMCL release 
at 90° flexion and that larger medial gap would increase 
tibial anterior translation relative to the femur were rein-
forced by the results. Surgeons should be careful not 
to perform excessive medial release up to the sMCL to 
obtain a rectangular extension gap to avoid medial and 
anteroposterior instabilities at flexion.

It is well known that release of the sMCL, the primary 
restraint to valgus rotation of the knee, during TKA 
increases medial looseness [5, 19, 20], which are more 
pronounced at 90° flexion than at extension [5, 21, 22]. In 
the present study, medial gap significantly increased from 
stage 1 to stage 3 at 0° flexion (3.2 mm), but the incre-
ment was considerably larger at 90° flexion (7.2 mm). 
Robinson et  al. cut the dMCL, PMC, and sMCL on six 
cadaveric native knees in a similar order to the present 

study, and the sMCL cut after cutting the dMCL and 
PMC significantly increased valgus angle by up to 8° at 0° 
to 90° flexion, whereas cutting the dMCL alone or addi-
tional PMC cut had no significant effect on valgus laxity 
at any flexion angle [23]. Iizawa et al. showed that release 
of the dMCL and PMC did not change medial gap in CR-
TKA using cadaveric knees [7]. These previous reports 
support our results, which also indicated no significant 
increase of medial gap and varus-valgus angle from stage 
1 to stage 2.

Excessive medial soft tissue release increases ante-
rior as well as medial instabilities [9, 10, 24]. In ante-
rior cruciate ligament (ACL)-deficient cadaveric knees, 
the sMCL cut after cutting the dMCL and PMC dra-
matically increased tibial anteromedial translation and 
anteromedial rotation angle as well as valgus rotation 
angle at 0° to 90° flexion [25]. This situation is consid-
ered similar to that in CR-TKA. While the ACL is the 
absolute primary restraint to tibial anterior translation, 
the sMCL plays a key role in preventing anteromedial 
instability of the knee in the absence of the ACL func-
tion. The present study found that tibial anterior trans-
lation significantly increased at stage 3 compared with 
stage 1 and stage 2 at 90° flexion. In addition, at 0° and 
90° flexion, tibial anterior translation was significantly 
correlated with medial gap and varus-valgus angle, 
which was substantiated by previous studies which 
intraoperatively examined the medial gap and tibial 
anteroposterior translation [10, 26]. However, the effect 
of intraoperative release of the sMCL was not evaluated 
due to the need for an appropriate ligament balance 
in vivo. This study could release the medial soft tissue 
in sequence up to sMCL using cadaveric knees to simu-
late surgery and could evaluate the effect of excessive 
medial release. It is noteworthy that our results were 
obtained according to an actual surgical procedure.

The present study showed that at stage 3, medial gap 
was nearly equal to lateral gap (12.5 mm and 12.2 mm, 
respectively) and varus-valgus angle was almost parallel 
(0.8°) at 0° flexion, indicating that a rectangular gap could 
be finally achieved after complete release of the sMCL at 
extension, which caused markedly increased medial gap 
and tibial anterior translation at 90° flexion (11.5 mm 
increase from stage 1 to stage 3). The knee joint presents 
maximum stiffness at extension due to stretching of sur-
rounding structures such as posterior joint capsule, ham-
strings, and gastrocnemius [21, 25], so surgeons should 
be careful not to determine intraoperative mediolateral 
ligament balance only at extension. Although minimal 
medial release, i.e., medial stabilizing technique, could 
result in a trapezoidal gap where lateral gap is larger than 
medial gap, native knees originally have approximately 3° 
larger lateral joint laxity compared with medial side both 

Fig. 5  Comparisons of tibial anterior translation between the stages 
showing a significance by the repeated measures analysis of variance 
among the three stages. Tibial anterior translation at 90° flexion 
was significantly larger at stage 3 than at stage 1 and stage 2
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at 0° and 90° flexion [27], and medial joint laxity remains 
unchanged in severe varus knees, whereas lateral joint 
laxity increases [15]. In a clinical practice, ligament ten-
sion is optimized by adjusting the amount of bone cut, 
without ligament release. The medial femoral condyle 
is resected distally to the same thickness as the femoral 
component and posteriorly 1–2 mm thicker than the 
femoral component taking into consideration the resid-
ual articular cartilage [12]. This procedure usually does 
not require excessive medial release, and could repro-
duce near-normal ligament laxity preventing medial 
and anterior instability after CR-TKA. Moreover, medial 

stabilizing technique has shown favorable clinical out-
comes even with a trapezoidal gap [1, 4, 6, 19, 28–31]. 
Excessive medial release could lead to kinematically 
unnecessary anteroposterior femorotibial movement 
[31–35] as well as patient awareness of instability [24, 
36], especially in CR-TKA without a prosthetic post-cam 
mechanism or congruence between the femoral compo-
nent and tibial insert [4], which also results in inferior 
clinical outcomes. Redundant medial release is unneces-
sary during TKA, and a residual asymmetrical joint gap 
can be permitted [9, 11].

Fig. 6  Tibial anterior translation had significant positive correlations with medial gap (a) and varus-valgus angle (b) at 0° flexion

Fig. 7  Tibial anterior translation had significant positive correlations with medial gap (a) and varus-valgus angle (b), and tibial posterior translation 
had a significant positive correlation with medial gap (c) at 90° flexion
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The present study has several limitations. First, the 
results might be changed in OA knees with osteophytes. 
In vivo or cadaveric knees with OA should be used to 
address this issue. However, intraoperative sequential 
medial release is ethically unacceptable, and it is dif-
ficult to obtain only specimens with knee OA. Osteo-
phyte resection sufficiently increases the medial laxity 
without PMC and sMCL release [19], and lateral joint 
laxity is considered greater in varus OA knees [14]. The 
medial soft tissue is not shorter with a greater preop-
erative varus deformity [15], and the results in the cur-
rent study can be applied to OA knees as well. Second, 
the sample size was small. Since the specimens were 
donated through the patients’ kindness during their 
lives, the available samples are limited. However, due 
to the large effect size, enough power (1-β) of 0.99 was 
obtained with post hoc power analysis. Third, Thiel-
embalmed specimens were used, and the biomechani-
cal properties of soft tissues can be altered. However, 
this embalming method, developed by Walter Thiel in 
1992 [37], preserves in  vivo soft tissue flexibility well, 
unlike the conventional fix preparation, allowing for 
measurements such as knee ROM and ligament balanc-
ing [38]. In practice, the knee has an unrestricted ROM 
during the examination. Fourth, only the coronal and 
sagittal laxities were examined. The release of the sMCL 
reduces tibial internal rotation [14, 39]. The PMC plays 
a key role in tibial internal rotation, particularly near 
extension [14, 39–42], and release of the PMC increases 
rotational angulation [7]. Fifth, only one CR prosthesis 
was used. Different trends might be observed for differ-
ent implant designs. Lastly, to measure anteroposterior 
stability after medial release, the thickness of the poly-
ethylene insert was not changed with the same tension 
in the lateral compartment because the lateral gap did 
not change after the medial release.

Conclusions
Medial soft tissue release also increased tibial anterior 
translation and medial joint gap, and medial joint gap 
and tibial anterior translation were significantly cor-
related. Surgeons should be careful not to create too 
large medial joint gap and tibial anterior translation in 
flexion by excessive medial release up to the sMCL for 
achieving an equal mediolateral joint gap in extension.
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